Investigation of prototype membrane based energy exchanger

Maria Justo Alonso, Hans Martin Mathisen, Sofie Aarnes

Background ZEB

Net Zero Energy Buildings aim at reducing energy needs through technology measures, using efficient energy supply systems; and substituting non environmental-friendly sources

- Study focused on NZEB apartment placed in Nordic countries
- Common ventilation system for all the apartments within a given building.
- The requirements for an ideal air-to-air energy exchanger for use in

NZEBs in Nordic countries are:

- high effectiveness and efficiency,
- proper IAQ and avoid odours spreading.

Common Recovery Systems

Flat Plate Energy (Enthalpy)
Exchanger Wheel
(paper or membrane)

Energy Exchange – Adjacent Duct

Research Stage: Run-around, Membrane Energy Exchanger (RAMEE)

Twin-Tower Enthalpy Recovery Loop

2004 ASHRAE Handbook.—HVAC systems and equipment handbook. © American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

Energy Exchange – Non-adjacent Duct

Heat Exchange – Adjacent Duct

Heat Exchange - Non-adjacent Duct

Exhaust Exchanger

Most common types for residential ventilation

A world where buildings do not contribute with greenhouse gas emissions

Heat wheels

- + High efficiency
- + No or small frost problems
- + Easy to control
- Transfer of odors from exhaust to fresh supply air

Ventilation of flats

Odors can spread from one flat to all others Air leakage

Frosting

Counterflow flat plate exchangers

Conventional heat exchanger with aluminum heat exchanger

Cold dry outdoors ai Membrane energy exchanger

Cold dry outdoors air

Heat exchanger prototype

Experimental set up

Properties for the different tested plate materials.

Material	Water permeable	Elastic	Crumples in high humidity
Wrapping plastic	No	No	No
PP (polypropylene)	No	yes	no
Membrane X	yes	yes	yes

Results

Results

	Plate Material	T _{s,in} (c)	T _{E,in} (c)	Φ _{s,in} (%)	Φ _{E,in} (%)	ΔPs [<u>Patel</u>]	ΔPe [<u>Patel</u>]	Vs(m³/h)	Ve(m³/h)	ητ	ητ
	Wrap plastic	-5.27	1	27.4	43.6	2.4	2.55	1.58*	1.58	0.27	no moisture transfer
2	Wrap plastic	-8.05	20.85	33.6	39.3	3.95	5.79	1.66	1.05	0.37	no moisture transfer
3	Mem	-4.96	21.25	27.1	42.86	9.248	8.96	0.74	1.38	0.41	0.37
4	PP	-8.41	21.04	35.17	46.15	6.16	6.73	1.38	1.3	0.35	No moisture transfer
5	Mem	-0.23	22.91	39.02	45.25	10.47	9.85	1.53	1.33	0.54	0.49
6	Mem	-4.32	22.77	29.54	43.27	11.13	10.48	1.55	1.2	0.54	0.58
7	Mem	-10.5	23.21	41.04	37.27	27.19	25.6	2.6	0.6	0.6	0.91
8	Mem	-9.62	22.9	34.22	46.6	25.25	24.8	1.4*	0.6	0.61	0.88

Results

	Plate Material	T _{s,in} (c)	T _{E,in} (c)	Φ _{s,in} (%)	Φ _{E,in} (%)	ΔPs [<u>Patel</u>]	ΔPe [<u>Patel</u>]	Vs(m³/h)	Ve(m³/h)	ητ	ητ
	Wrap plastic	-5.27	1	27.4	43.6	2.4	2.55	1.58*	1.58	0.27	no moisture transfer
2	Wrap plastic	-8.05	20.85	33.6	39.3	3.95	5.79	1.66	1.05	0.37	no moisture transfer
3	Mem	-4.96	21.25	27.1	42.86	9.248	8.96	0.74	1.38	0.41	0.37
4	PP	-8.41	21.04	35.17	46.15	6.16	6.73	1.38	1.3	0.35	No moisture transfer
5	Mem	-0.23	22.91	39.02	45.25	10.47	9.85	1.53	1.33	0.54	0.49
6	Mem	-4.32	22.77	29.54	43.27	11.13	10.48	1.55	1.2	0.54	0.58
7	Mem	-10.5	23.21	41.04	37.27	27.19	25.6	2.6	0.6	0.6	0.91
8	Mem	-9.62	22.9	34.22	46.6	25.25	24.8	1.4*	0.6	0.61	0.88

Temperature efficiency for all experiments

Pressure drop Experiments 1, 2 and 4 are plastic based while 3, 5, 6, 7, 8 are membrane based.

Membrane crumpling

Conclusions

- Frost formation on plastic prototypes in exhaust channels near outdoor air inlet side of the exchanger.
- Not found in hydrophilic membrane. However, in exhaust air inlet humidity (46.6 % RH), the membrane expanded and crumpled.
- Hydrophilic membrane superior to the two plastic materials regarding
 - water condensation
 - frost formation
- Pressure drop strongly influenced by membrane elasticity and not proportional to flow rate.
- Other types of membranes should also be tested.
- Test at supply air temperature about -10 °C. Lower temperature performance should be investigated
- These tests should be repeated in a full-scale prototype to avoid scaling effects.
- Membranes should also be tested for durability and pollution transfer

THANK YOU FOR YOUR ATTENTION

