Materials Research for Zero Emission Buildings

Bjørn Petter Jelle ab

^a Department of Materials and Structures, SINTEF Building and Infrastructure, NO-7465 Trondheim, Norway.

^b Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.

Klimax Breakfast Seminar, Trondheim, Norway, 20th of November, 2014.

Examples of Materials Research Related to the Building Envelope With selected commercial examples

Thermal Insulation

- Traditional
- State-of-the-art
- Future

Phase Change Materials

- Coating and Window Materials and Technologies
 - Low Emissivity Coatings
 - Electrochromic Materials
 - Aerogel Glazing
 - New Glass Materials

- Building Integrated Photovoltaics (BIPV)
 - Solar Cell Material Properties and Requirements
 - Building Envelope Properties and Requirements

NTNU

Why is Thermal Insulation Important ? - What Measures Amounts the Most ?

Global GHG abatement cost curve beyond business-as-usual – 2030

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €60 per tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play. Source: Global GHG Abatement Cost Curve v2.0

Z

Thermal Background – Thermal Transport - Thermal Conductivity Contributions

$$\lambda_{tot} = \lambda_{solid} + \lambda_{gas} + \lambda_{rad} + \lambda_{conv} + \lambda_{coupling} + \lambda_{leak}$$

 $\begin{array}{ll} \lambda_{tot} = \text{total overall thermal conductivity} \\ \lambda_{solid} = \text{solid state thermal conductivity} \\ \lambda_{gas} = \text{gas thermal conductivity} \\ \lambda_{rad} = \text{radiation thermal conductivity} \\ \lambda_{conv} = \text{convection thermal conductivity} \\ \lambda_{coupling} = \text{thermal conductivity term accounting for second order} \\ \text{effects between the various thermal conductivities} \\ \lambda_{leak} = \text{leakage thermal conductivity} \end{array}$

Traditional Thermal Insulation of Today

- What is Out There?

Mineral Wool

- Glass wool (fibre glass)
- Rock wool
- 30-40 mW/(mK)
- Expanded Polystyrene (EPS) - 30-40 mW/(mK)
- Extruded Polystyrene (XPS) - 30-40 mW/(mK)
 - Cellulose - 40-50 mW/(mK)
 - Cork - 40-50 mW/(mK)
- Polyurethane (PUR)
 - Toxic gases (e.g. HCN) released during fire
 - 20-30 mW/(mK)

Will often require very thick building envelopes

State-of-the-Art Thermal Insulation of Today - What is Out There?

Vacuum Insulation Panels (VIP)

"An evacuated foil-encapsulated open porous material as a high performance thermal insulating material"

- Core (silica, open porous, vacuum)
- Foil (envelope) - 4 - 8 - 20 mW/(mK)
- Gas-Filled Panels (GFP) 40 mW/(mK)
- **Aerogels** 12 20 mW/(mK)
- Phase Change Materials (PCM)
 - Solid State ↔ Liquid
 - Heat Storage and Release
 - **Beyond State-of-the-Art High Performance Thermal Insulation Materials ?**

NTNU

Major Disadvantages of VIPs

- Thermal bridges at panel edges
- Expensive at the moment, but calculations show that VIPs may be cost-effective even today
- Ageing effects Air and moisture penetration
 - ─4 mW/(mK) fresh
 - -8 mW/(mK) 25 years
 - -20 mW/(mK) perforated
- Vulnerable towards penetration, e.g nails
 - —20 mW/(mK)
- Can not be cut or adapted at building site
- Possible improvements?

VIP

Potential Cost Savings by Applying VIPs

NTNU

8

Concrete – High Thermal Conductivity \Rightarrow Large Heat Loss Possible to decrease the thermal

- Thermal Conductivity
- Concrete
 - 150 2500 mW/(mK)
- **Traditional Thermal Insulation**
 - 36 mW/(mK)
- Vacuum Insulation Panels (VIPs)
 - 4 mW/(mK)

conductivity of concrete?

Large CO₂ Emissions from Cement Production

- The cement industry produces 5 % of the global man-made CO₂ emissions of which:
- 50 % from the chemical process
 - e.g.: $3CaCO_3 + SiO_2 \rightarrow Ca_3SiO_5 + 3CO_2$ $2CaCO_3 + SiO_2 \rightarrow Ca_2SiO_4 + 2CO_2$
- 40 % from burning fossil fuels
 - e.g. coal and oil
- 10 % split between electricity and transport uses

World Business Council for Sustainable Development

World Business Council for Sustainable Development, "The cement sustainability initiative – Our agenda for action", July 2002.

And let us not forget the corrosion issues with reinforced concrete...

NTNU

Nano Insulation Material (NIM)

NIM - A basically homogeneous material with a closed or open small nano pore structure with an overall thermal conductivity of less than 4 mW/(mK) in the pristine condition

The Knudsen Effect – Nano Pores

Gas Thermal Conductivity λ_{gas}

$$\lambda_{gas} = \frac{\lambda_{gas,0}}{1+2\beta Kn} = \frac{\lambda_{gas,0}}{1+\frac{\sqrt{2}\beta k_{B}T}{1+\frac{\sqrt{2}\beta k_{B}T}{\pi d^{2}p\delta}}} \qquad 70$$

where

$$Kn = \frac{\sigma_{mean}}{\delta} = \frac{k_B T}{\sqrt{2}\pi d^2 p \delta}$$

 $\begin{array}{l} \lambda_{gas} = gas \ thermal \ conductivity \ in \ the \ pores \ (W/(mK))\\ \lambda_{gas,0} = gas \ thermal \ conductivity \ in \ the \ pores \ at \ STP \ (standard \ temperature \ and \ pressure) \ (W/(mK))\\ \beta = coefficient \ characterizing \ the \ molecule - wall \ collision \ energy \ transfer \ efficiency \ (between \ 1.5 - 2.0)\\ Kn = \sigma_{mean}/\delta = k_{B}T/(2^{1/2}\pi d^{2}p\delta) = the \ Knudsen \ number \ k_{B} = Boltzmann's \ constant \approx 1.38\cdot 10^{-23} \ J/K \ T = temperature \ (K) \ d = gas \ molecule \ collision \ diameter \ (m) \end{array}$

- p = gas pressure in pores (Pa)
- δ = characteristic pore diameter (m)
- σ_{mean} = mean free path of gas molecules (m)

NTNU

Gas Thermal Conductivity

Conductivity vs. Pore Diameter

DNTNU

Air

T = 300 K

Hollow Silica Nanospheres (HSNS)

Hollow silica nanospheres by making and applying equal-sized templates

From Theory to Experiment

Controlling:
Sphere inner diameter
Sphere wall thickness

DNTNU

To Envision Beyond Concrete ?

- **In the community of concrete it might be compared to using** profane language in the church and close to blasphemy to suggest that maybe the answer is not concrete after all...
- Concrete:
- High thermal conductivity.

Emphasis on Properties and Functional Requirements

- Total thickness of the building envelope will often become unnecessary large (passive house, zero energy building or zero emission building).
- Large CO₂ emissions connected to the production of cement.
- Prone to cracking induced by corrosion of the reinforcement steel.
- Easy accessible and workable, low cost and local production.
- High fire resistance.
 - Is it possible to envision a building and infrastructure industry without an extensive usage of concrete?

NanoCon – Introducing a New Material

NanoCon

- Basically a homogeneous material
- Closed or open small nano pore structure
- Overall thermal conductivity < 4 mW/(mK)</p> (or another low value to be determined)
- Exhibits the crucial construction properties that are as good as or better than concrete.
 - Utilize carbon nanotubes (CNT)? Tensile strengths of 63 GPa (measured) and 300 GPa (theoretical). (Steel rebars 500 MPa and concrete 3 MPa.)
- Essentially, NanoCon is a NIM with construction properties matching or surpassing those of concrete.

The First Step - Aerogel Incorporated Concrete

Aerogel in concrete

Reference concrete

NTNU

The Research Centre on Zero Emission Buildings

19

Aerogel Incorporated Concrete

Thermal conductivity and compressive strength vs. mass density for varying aerogel content

Concrete with NIM – The Path Further Ahead

Investigate better mixtures of aerogel and concrete.

- Smaller aerogel granulates.
- Larger aerogel content (> 60 vol%) in concrete.
- Tailor-make NIM.
 - Pursue the lowest possible NIM thermal conductivity.
 - Incorporation of NIM into concrete.
 - Mechanical strengthening remidies.
 - Various carbon nano tubes (CNT) possibilities.
 - Other possibilities.
 - Life cycle analysis (LCA).
 - Different concrete og nano material combinations.
 - Comparison with other materials and solutions.

NTNU

23

Commercial Electrochromic Windows

Transparent

Coloured

DNTNU

Development of a New Glass Material

- A new glass material has been made: -
 - Reduced mass density (weight) by a factor 1.6
 - Reduced thermal conductivity by a factor 5.4
 - Increased solar transmittance

Insulating Glazing with Silica Aerogel Granules

- Miscellaneous investigations:
- Particle size impact
- Convection studies
- Characterization and method development
- Energy and daylight calculations and evaluations

(Aspen Aerogels 2009).

Aerogels

Translucent aerogel (NASA 2010).

Transparent aerogel (although blurred) (Jensen et al. 2004).

UV-VIS-NIR and IR transmittance of translucent/transparent aerogel (redrawn from Ramakrishnan et al. 2007).

Aerogels: Opaque **Translucent** Transparent

Rasmus Gullberg AIRGLASS AB

Transparent aerogel (although blurred) (Airglass 2014).

DNTNU

Translucent aerogel in use in Sculpture Building and Gallery of Yale University, New Haven, Connecticut, USA.

- Aerogels:
- Opaque
- Translucent
- Transparent

KALWALL High-Performance Translucent Building Systems.

Phase Change Materials (PCM) in Windows

Sekisui air sandwich with principal drawings and U-value and T_{vis} performance with respect to number of air layers divided by thin plastic films. The U-value is depicted for three given fixed widths (i.e. 4, 10 and 100 mm) (Sekisui 2007, 2010).

Glass – Solar Radiation – Self-Cleaning Window Panes

Window Panes Cleaning Themselves? How?

Solar Radiation (UV) + Water + Special Coating (e.g. TiO₂)

Building Integrated PhotoVoltaics (BIPV) - Today and Tomorrow

- Replacing the outer building envelope skin, i.e. both a climate screen and a power source generating electricity.
- Fulfil the requirements of both:
 Building envelope.
 PV solar cells.
- Durability in general and vs. climate exposure factors.
- Rain, air and wind tightness, various building physical aspects like heat and moisture transport, etc.
- Reducing electricity costs.

NTNU

- Savings in materials and labour.
- State-of-the-art BIPV products.
- Possible future BIPV research paths.

New Materials and Solutions for BIPV

"think thoughts not yet thought of" and "the more we know the more we know we don't know" (Jelle et al. 2010).

PV Development and Impact on BIPV

ZEB Living Lab and ZEB Research Cells

- Establishment of Research Buildings at NTNU Campus

DNTNU

34

Conclusions

Materials Research for Zero Emissions Buildings

- Developing New Materials
- Functions, Properties and Requirements
- Material, Component and Building Level
- Material Scarcity, Embodied Energy, Environmental Impact
- Life Cycle Assessment

Many Topics to be Considered

- Thermal Insulation
- Phase Change Materials
- Coating and Window Materials and Technologies
- Building Integrated Photovoltaics
- And many others...!

