Publications

Et selvdrevent fremtidshus
Publication Year: 2014


Peiskos på sparebluss
Publication Year: 2014


Vil ha karbonnøytrale nabolag
Publication Year: 2014



Grønne vinduer
Publication Year: 2014


Zero Emission Buildings
Authors: Publication Year: 2014


Abstract: Background Phase change materials (PCMs) have been proposed as a means to increase the thermal inertia of glazing systems. These materials have optical features that need to be investigated and characterised in order to better understand the potential of these systems and to provide reliable data for numerical simulations.   Methods The spectral and angular behaviour of different PCM glazing samples, characterised by different thicknesses of PCMs, were investigated by means of commercial spectrophotometer and by means of a dedicated optical test bed that includes a large integrating sphere with a diameter of 0.75 m. Such equipment was necessary because…

Hus på plussiden
Publication Year: 2015


Her puster huset av seg selv
Publication Year: 2015


Abstract The CO2 emissions from a building’s power system will change over the life time of the building, and this need to be taken into account to verify whether a building is Zero Emission (ZEB) or not. This paper describes how conversion factors between electricity demand and emissions can be calculated for the European power system in a long term perspective through the application of a large scale electricity market model (EMPS). Examples of two types of factors are given: a conversion factor for average emissions per kWh for the whole European power system as well as a marginal factor for…

Abstract Shading systems are widely used, also in Nordic climates, in conjunction with glazed facade in office buildings. The primary functions of the solar shading devices are to control solar gains leading to cooling needs during operational hours and reduction of discomfort caused by glare. A secondary property of shading devices incorporated in glazing units is that they can be utilized as an additional layer in the glazing unit when the shading device is deployed. This can improve the thermal transmittance value (U-value) of the windows. It can be deployed during night-time or in periods when a blocked view does…

Abstract Electrochromic materials (ECM) and windows (ECW) are able to regulate the solar radiation throughput by application of an external electrical voltage. Thus, ECWs may decrease heating, cooling, lighting and electricity loads in buildings by admitting the optimum level of solar energy and daylight at any given time, e.g. cold winter climate versus warm summer climate demands. It is crucial to be able to compare the dynamic solar radiation control for different ECWs and hence require specific ECW properties. The solar radiation control for ECWs may readily be characterized by several solar radiation glazing factors, where a comparison for various ECW configurations enables one to select the most appropriate ones for specific smart…

Abstract The application of superinsulation materials (SIM) reaching thermal conductivities far below 20 mW/(mK) allows the construction of relatively thin building envelopes while still maintaining a high thermal resistance, which also increases the architectural design possibilities for both new buildings and refurbishment of existing ones. To accomplish such a task without applying vacuum solutions and their inherit weaknesses may be possible from theoretical principles by utilizing the Knudsen effect for reduced thermal gas conductance in nanopores.This study presents the attempts to develop nano insulation materials (NIM) through the synthesis of hollow silica nanospheres (HSNS), indicating that HSNS may represent a promising candidate or stepping-stone for achieving SIM. Furthermore, initial…

Summary This paper provides a summary of main content and conclusions from a report on evaluation of existing potential and scenario studies concerning renovation of residential buildings. In addition to literature studies there were conducted own calculations adapted from the most important Norwegian scenario model. Also studies addressing design of regulatory requirements for measures with existing buildings were reviewed. The results were discussed in expert workshops. The technical potential for energy upgrade seems to be under- rather than overestimated. On the other hand, the paper substantiates that the renovation rate is lower than assumed in the scenarios, and illustrates that…

Abstract A frost-free membrane energy exchanger design model is developed combining the conventional ε−NTU method with a frost limit model. A concept of plate performance index is defined to evaluate the net energy saving ability. The frost-free design model and plate performance index are employed for a case study of single-family dwelling with an all-fresh-air air handling unit with a heat/energy recovery exchanger. The membrane energy exchanger, which is able to ensure frost-free operation without extra frost control strategies, is applicable to most cold climates for residential applications. The membrane energy exchanger has a significant energy saving potential compared to…

Abstract Use of photovoltaics (PV) is key remedies in buildings where a large part of the energy supply should be based on renewable energy. PV in Nordic climate can be challenging because of snow, wind and temperatures below zero. The aim of this research work has been to provide a state-of-the art overview of recent experiences and challenges for building physical conditions related to the use of roof-integrated PV in Nordic climate. The study has identified practical guidelines for installation and ventilation of the roofing as challenges to be solved for extensive use of such systems in Nordic climate.

Abstract Introduction of more dynamic building envelope components have been done throughout the last decades in order to try to increase indoor thermal comfort and reduce energy need in buildings for both temperature and light control. One of these promising technologies is phase change materials (PCM), where, the latent heat storage potential of the transition between solid and liquid state of a material is utilized as thermal mass. A PCM layer incorporated in a transparent component can increase the possibilities to harvest energy from solar radiation by reducing the heating/cooling demand and still allowing the utilization of daylight. The introduction…

Abstract In highly-insulated buildings such as passive houses, the space-heating distribution subsystem can be simplified by reducing the number of heat emitters. In this context, the bi-directional flow through open doorways is known to be an efficient process to support the heat distribution between rooms. This process is therefore investigated using field measurements within a Norwegian passive house. The so-called large opening approximation proves to model fairly the mass flow rate, but also the convective heat transfer if the thermal stratification is accounted for. Furthermore, the discharge coefficient appears to be independent of the heater type and location in the…

Abstract The building envelope plays a crucial role in reducing operational energy demand. In particular, the two main properties of the building envelope to look at in this perspective are thermal transmittance (U, W/m2K1) and thermal inertia, which is often expressed by a metric called periodic thermal transmittance (Yie, W/m2K1). These two properties are also traditionally connected to two different energy demands: while thermal transmittance is crucial to reduce heating energy demand, thermal inertia has an impact on energy demand for cooling. However, a question may rise about the impact of each property on the other demand – i.e. the…

Abstract The building envelope plays a crucial role in reducing operational energy demand. In particular, the two main properties of the building envelope to look at in this perspective are thermal transmittance (U, W/m2K1) and thermal inertia, which is often expressed by a metric called periodic thermal transmittance (Yie, W/m2K1). These two properties are also traditionally connected to two different energy demands: while thermal transmittance is crucial to reduce heating energy demand, thermal inertia has an impact on energy demand for cooling. However, a question may rise about the impact of each property on the other demand – i.e. the…

Summary At the Research Centre on Zero Emission Buildings of NTNU, a new test facility (Living Laboratory) is currently in the final stage of construction and will start its operation in summer 2015. The Living Laboratory was designed to carry out experimental investigations at different levels, ranging from envelope to building equipment components, from ventilation strategies to action research on lifestyles and technologies, where interactions between users and low (zero) energy buildings are studied.The test facility is a single family house with a gross volume of approximately 500 m3 and a heated surface (floor area) of approximately 100 m2. It…

Abstract There is an increasing interest in development of coupled multi-layer window structures. This is to optimize thermal properties and to develop systems with a better climate protected solar shading system. The risk of condensation on the inside of the exterior glass layer in a multi-layer window structure might be a challenge and is often questioned. The risk of condensation will depend on both window properties and indoor and outdoor climate conditions. The air gap between the inner and outer part have to be ventilated with outdoor air to give the window a "drying out" capacity. The U-value of the…

Fremtidens bygninger
Authors: Publication Year: 2015


Abstract The net-zero emissions building (nZEB) performance is investigated for building operation and embodied emissions in materials for Norway’s cold climate. An nZEB concept for new residential buildings was developed in order to understand the balance and implications between operational and embodied emissions over the building’s life. The main drivers for the CO2 equivalent (CO2eq) emissions were revealed for the building concept through a detailed emissions calculation.Previous investigations showed that the criterion for zero emissions in operation is easily reached by the nZEB concept (independent of the CO2eq factor considered). Nevertheless, embodied emissions from materials appeared significant compared to operational emissions. It was found that an…

Search our website

Sort publications by:

Ascending order

Filter Publications: