Building integrated photovoltaics (BIPVs) are photovoltaic materials that replace conventional building materials in parts of the building envelopes, such as roofs or facades, i.e. the BIPV system serves dual purposes, as both a building envelope material and a power generator. Hence, it is important to focus on the building envelope properties of a BIPV system in addition to energy generation performance when conducting experimental investigations of BIPVs. The aim of this work was to illustrate challenges linked to the building envelope properties of a BIPV system, and to develop and evaluate relevant methods for testing the building envelope properties of BIPV systems.

A sample roof area with two BIPV modules was built and tested in a turnable box for rain and wind tightness testing of sloping building surfaces with the aim of investigating the rain tightness of the BIPV system, and observing how it withstood wind-driven rain at large-scale conditions. The BIPV sample roof went through testing with run-off water and wind-driven rain with incremental pulsating positive differential pressure over the sample at two different inclinations. The BIPV sample roof was during testing constantly visually monitored, and various leakage points were detected. In order to prevent such water penetration, the steel fittings surrounding the BIPV modules should ideally be better adapted to the BIPV modules and constricted to some extent. It is however important to maintain a sufficient ventilation rate simultaneously.

Published in Journal papers

Building integrated photovoltaics (BIPVs) are photovoltaic (PV) modules integrated into the building envelope and hence also replacing traditional parts of the building envelope, e.g. the roofing. In this context, the BIPVs integration with the building envelope limits the costs by serving dual purposes. BIPVs have a great advantage compared to non-integrated systems because there is neither need for allocation of land nor stand-alone PV systems. This study seeks to outline various commercially available approaches to BIPVs and thus provides a state-of-the-art review. In addition, possible future research opportunities are explored.

The various categories of BIPVs may be divided into photovoltaic foils, photovoltaic tiles, photovoltaic modules and solar cell glazings. Silicon materials are the most commonly used, and a distinction is made between wafer-based technologies and thin-film technologies. In addition, various non-silicon materials are available. The main options for building integration of PV cells are on sloped roofs, flat roofs and facades. The evaluation of the different BIPV products involves, among others, properties such as solar cell efficiency, open circuit voltage, short circuit current, maximum effect and fill factor.

It is expected that the BIPV systems will improve in the years to come, regarding both device and manufacturing efficiency. The future seems very promising in the BIPV industry, both concerning new technologies, different solutions and the variety of BIPV options.

Published in Journal papers

Search our website

Sort publications by:

Ascending order

Filter Publications: