Abstract
There is an increasing interest in development of coupled multi-layer window structures. This is to optimize thermal properties and to develop systems with a better climate protected solar shading system. The risk of condensation on the inside of the exterior glass layer in a multi-layer window structure might be a challenge and is often questioned. The risk of condensation will depend on both window properties and indoor and outdoor climate conditions. The air gap between the inner and outer part have to be ventilated with outdoor air to give the window a "drying out" capacity. The U-value of the window and the moisture condition in the air gap both depend on the ventilation of the air gap. Reducing the ventilation improves the U-value, but increases the time of desiccation.Net long-wave radiation from the glass surface to the atmosphere during cloudless night-time will cause exterior glass temperatures lower than the outdoor air temperature, and hence increase the risk of condensation on both sides of the exterior glass. The aim of this work has been to assess for which climate conditions there will be a risk of condensation on the exterior glass layer and what might be the optimal ventilation of the outermost air gap. Simulations of the temperature on the exterior surface of the glazing including the long-wave radiation during night-time have been done and compared to measurements. An assessment has been made studying the risk of condensation and the drying out rate for climate conditions for two locations in Germany. A spreadsheet-based model calculating the U-value of a multilayer glazing unit according to ISO 15099 [1] has been further developed including airflow from exterior openings through the air gap.
Abstract
The application of superinsulation materials (SIM) reaching thermal conductivities far below 20 mW/(mK) allows the construction of relatively thin building envelopes while still maintaining a high thermal resistance, which also increases the architectural design possibilities for both new buildings and refurbishment of existing ones. To accomplish such a task without applying vacuum solutions and their inherit weaknesses may be possible from theoretical principles by utilizing the Knudsen effect for reduced thermal gas conductance in nanopores.
This study presents the attempts to develop nano insulation materials (NIM) through the synthesis of hollow silica nanospheres (HSNS), indicating that HSNS may represent a promising candidate or stepping-stone for achieving SIM. Furthermore, initial experiments with aerogel-incorporated concrete and the conceptual work concerning NanoCon are presented.
Summary
At the Research Centre on Zero Emission Buildings of NTNU, a new test facility (Living Laboratory) is currently in the final stage of construction and will start its operation in summer 2015. The Living Laboratory was designed to carry out experimental investigations at different levels, ranging from envelope to building equipment components, from ventilation strategies to action research on lifestyles and technologies, where interactions between users and low (zero) energy buildings are studied.
The test facility is a single family house with a gross volume of approximately 500 m3 and a heated surface (floor area) of approximately 100 m2. It is realized with state-of-the-art technologies for energy conservation measurements and renewable energy source exploitation. In this paper, the test facility is described and its architectural features and technological aspects highlighted. The focus is then placed on the detail description of the proposed measurement and control system.
Abstract
The building envelope plays a crucial role in reducing operational energy demand. In particular, the two main properties of the building envelope to look at in this perspective are thermal transmittance (U, W/m2K1) and thermal inertia, which is often expressed by a metric called periodic thermal transmittance (Yie, W/m2K1). These two properties are also traditionally connected to two different energy demands: while thermal transmittance is crucial to reduce heating energy demand, thermal inertia has an impact on energy demand for cooling. However, a question may rise about the impact of each property on the other demand – i.e. the impact of thermal insulation on the cooling energy demand and the impact of thermal inertia on the heating demand.
A parametric analysis on the influence of the thermal inertia on the energy performance of a single family house in a Nordic climate has been carried out to find an answer to this question. “Ideal envelopes” have been modelled and simulated, meaning that used thermophysical properties do not represent any configuration, but the entire spectrum of technological configurations.
The results show that the influence of the thermal inertia on the heating energy need is very limited. Even a relatively high value of Yie, which means no or little thermal inertia, does not determine a significant increase in energy need. Parallel to this, solutions characterized by very high thermal inertia do not allow heating energy demand to be sensibly decreased. Periodic thermal transmittance has instead an impact on the heating load. The impact of the thermal inertia is also assessed in the warmer season, and the results show that this parameter does not significantly contribute to a better behavior (especially when the upper limit of the indoor air temperature is controlled). Limitations to value of thermal transmittance are also pointed out to avoid non-energy effective conditions when the total (heating plus cooling) annual performance is considered.
Abstract
The building envelope plays a crucial role in reducing operational energy demand. In particular, the two main properties of the building envelope to look at in this perspective are thermal transmittance (U, W/m2K1) and thermal inertia, which is often expressed by a metric called periodic thermal transmittance (Yie, W/m2K1). These two properties are also traditionally connected to two different energy demands: while thermal transmittance is crucial to reduce heating energy demand, thermal inertia has an impact on energy demand for cooling. However, a question may rise about the impact of each property on the other demand – i.e. the impact of thermal insulation on the cooling energy demand and the impact of thermal inertia on the heating demand.
A parametric analysis on the influence of the thermal inertia on the energy performance of a single family house in a Nordic climate has been carried out to find an answer to this question. “Ideal envelopes” have been modelled and simulated, meaning that used thermophysical properties do not represent any configuration, but the entire spectrum of technological configurations.
The results show that the influence of the thermal inertia on the heating energy need is very limited. Even a relatively high value of Yie, which means no or little thermal inertia, does not determine a significant increase in energy need. Parallel to this, solutions characterized by very high thermal inertia do not allow heating energy demand to be sensibly decreased. Periodic thermal transmittance has instead an impact on the heating load. The impact of the thermal inertia is also assessed in the warmer season, and the results show that this parameter does not significantly contribute to a better behavior (especially when the upper limit of the indoor air temperature is controlled). Limitations to value of thermal transmittance are also pointed out to avoid non-energy effective conditions when the total (heating plus cooling) annual performance is considered.
This chapter reports an approach to enhance the mechanical strength of silica aerogels via densification. Although the loss of porosity and consequently the increase of thermal conductivity of silica aerogels represent drawbacks related to the densification process, a combination of enhanced mechanical performance and optical transparency indicates that the densificated silica aerogels may be used as new glass material for window glazing application. Preliminary experimental results indicate lightweight (density 1.8 g/cm3, compared to 2.5 g/cm3 for float glass) and thermal insulating (thermal conductivity k ≈ 0.18 W/(mK), compared to about 0.92 W/(mK) for float glass) aerogel glass materials with high visible transparency (Tvis ≈ 95.4% at 500 nm, compared to 92.0% for float glass) can be achieved by annealing an acid-catalyzed silica aerogel precursor at 700 °C. Typical elastic modulus Er of the obtained aerogel glass materials is about 6.42 GPa, which can be further enhanced by, e.g., increasing the annealing temperatures.