Abstract Low-emissivity (low-e) materials can be used in order to reduce energy usage in both opaque and transparent areas of a building. The main focus for low-e materials is to reduce the heat transfer through thermal radiation. Furthermore, low-e materials will also influence on the daylight and total solar radiation energy throughput in windows, the latter one often characterized as the solar heat gain coefficient (SHGC). This work reviews low-e materials and products found on the market, and their possible implementations and benefits when used in buildings. The SHGC is often left out by many countries in energy labellings of…
Published in Journal papers
Abstract Phase change materials (PCM) have received considerable attention over the last decade for use in latent heat thermal storage (LHTS) systems. PCMs give the ability to store passive solar and other heat gains as latent heat within a specific temperature range, leading to a reduction of energy usage, an increase in thermal comfort by smoothing out temperature fluctuations throughout the day and a reduction and/or shift in peak loads. The interest around PCMs has been growing significantly over the last decade. Hence, several commercial products have arrived on the market with various areas of use in building applications. This…
Published in Journal papers
Abstract Improvements to concrete will have a large impact in the construction and building sector. As the attention is drawn towards energy-efficient and zero emission buildings, the thermal properties of concrete will be important. Attempts are being made to decrease the thermal conductivity of concrete composites while retaining as much as possible of the mechanical strength. In this study experimental investigations of aerogel-incorporated mortar (AIM) with up to 80 vol% aerogel are prepared utilizing a reduced ultra-high performance concrete (UHPC) recipe. It was found that at 50 vol% aerogel content, the AIM sample possessed a compressive strength of 20 MPa and a thermal…
Published in Journal papers
Abstract Silica aerogels are a nanoporous material with extremely high porosity (up to ~99.8 %), low density (as low as ~0.005 g/cm3), and low thermal conductivity (~0.010–0.020 W/(mK)). Aerogels can also be made with a translucent or transparent state. These structural and functional features make aerogels a multifunctional material for many important applications. In this work, we discuss the perspective of aerogels as super insulation materials and window glazings in the building and construction sector. It shows that different research and development (R&D) strategies of aerogels shall be considered when aiming for different applications; reducing the manufacture cost, improving the…
Published in Conference papers
Summary This chapter reports an approach to enhance the mechanical strength of silica aerogels via densification. Although the loss of porosity and consequently the increase of thermal conductivity of silica aerogels represent drawbacks related to the densification process, a combination of enhanced mechanical performance and optical transparency indicates that the densificated silica aerogels may be used as new glass material for window glazing application. Preliminary experimental results indicate lightweight (density 1.8 g/cm3, compared to 2.5 g/cm3 for float glass) and thermal insulating (thermal conductivity k ≈ 0.18 W/(mK), compared to about 0.92 W/(mK) for float glass) aerogel glass materials with high visible transparency…
Published in Conference papers

Search our website

Sort publications by:

Ascending order

Filter Publications: