Abstract Calcined marl was identified as an insulating binder substituent mate-rial for aerogel based mortars. Further synthesis of insulating organo-nanoclays through the incorporation of polyethylene glycol (PEG) or in situ polymerisation of polystyrene (PS) in clays displayed greater promises for further reduction of thermal conductivity independent of the compressive strength, unlike more con-ventional aerogel-incorporated concrete. The organo-nanoclays were characterized by Hot Disk thermal analyzer measurements. The results so far indicated the for-mation of organoclay particles from both ideal systems of bentonite and calcined marl with lowered thermal conductivities. The calcined clay appeared to maintain its binding properties, suitable for gelling…
Published in Conference papers
Abstract The application perspective of aerogel glazings in energy efficient buildings has been discussed by evaluating their energy efficiency, process economics, and environmental impact. For such a purpose, prototype aerogel glazing units have been assembled by incorporating aerogel granules into the air cavity of corresponding double glazing units, which enables an experimental investigation on their physical properties and a subsequent numerical simulation on their energy performance. The results show that, compared to the double glazing counterparts, aerogel glazings can contribute to about 21% reduction in energy consumptions related to heating, cooling, and lighting; payback time calculations indicate that the return…
Published in Journal papers
Abstract The effect of elevated temperature during storage and curing of ultra-high performance concrete (UHPC) formulated aerogel-incorporated mortar (AIM) samples was investigated. It was found that an effective aerogel loading of 60 vol% of total bulk volume was possible for producing AIM samples with suitable thermal and mechanical properties under optimized storing and curing conditions. AIM samples with compressive strengths of up to ≈19 MPa was achieved and the corresponding thermal conductivity was ≈0.4 W/(mK). For more insulating concrete, 70 vol% aerogel was needed and AIM samples with thermal conductivity as low as ≈0.1 W/(mK) were cast. In general, AIM samples with strengths of up…
Published in Journal papers

Search our website

Sort publications by:

Ascending order

Filter Publications: