Publications

Realisation of Net Zero Energy Buildings (NZEB) for residential use depends on, among many other things, minimizing air leakages. However, very airtight houses will have an increased risk for problems regarding indoor humidity, thermal comfort and indoor air quality. Focusing on ventilation systems becomes a requirement in this situation. For cold climates, mechanical ventilation systems are the state of the art solution and in order to achieve a further reduction in energy use, the focus must be on efficient energy recovery. This paper focuses on a quasi-counter flow membrane-based heat and moisture recovery system for cold climates such as the…

While the design and construction of envelopes for Passive House certified homes in central European climates is well developed and has achieved widespread acceptance and reliability, the same cannot be said in colder climate regions such as the United States’ upper Midwest (DOE climate zones 6 and 7) and Scandinavia. The objective of this research was to study some of the typical building performance issues relating to Passive House envelope construction for single family homes in cold climates by testing and developing a group of 8 envelope options. Typical issues include unfamiliarity with performance of thermal bridge details, added embodied…

Sandwich elements are widely used in the building envelope, in walls and foundations in particular. The thickness of sandwich elements is increasing as the demand for reduced heat loss from the building envelope is required. The building industry is searching for means and alternative materials to reduce the volume of the building envelope, but at the same time obtain the same thermal performance. Sandwich element constructions might be suitable for highly effective insulation materials as VIPs (Vacuum Insulation Panels). The possibilities of optimizing the thermal performance and by the same time decreasing the thickness and reducing the volume of aggregated…

“Powerhouse” is an alliance that will demonstrate that it is possible to build plus-energy buildings in cold climates, such as in Norway. For the Powerhouse project in Trondheim (Brattørkaia 17a), PV panels will produce and offset the delivered energy needed during the operation and for compensating the embodied energy of the building. The building will thus export more electricity than it will use for operation. In a broader environmental perspective, an aim of this project is also to achieve the classification “Outstanding” in the BREEAM-NOR environmental certification scheme. Energy efficiency measures and materials with low embodied energy have been crucial…

The zero-energy project Skarpnes residential development in Arendal in Norway consists of a total of 40 dwelling units. The energy goal of the buildings is net zero-energy on a yearly level. In addition, the greenhouse gas emissions (GHG) related to the operational energy of the buildings shall also be zero on an annual basis. There is also an aim achieving low embodied energy and GHG emissions related to the buildings materials and products. The thermal demand of the buildings will be covered by heat pumps and thermal solar collectors. To reach the zero energy/emission goal, the roofs are partly covered…

An office building of about 2000 m2 heated floor area is being designed for the Norwegian Defense Estates Agency (Forsvarsbygg). The building will be located at Haakonsvern, about 15 km from the centre of Bergen, Norway. The design aims at meeting the ZEB criterion of net zero energy balance for building operation during a year. The energy for operation of the plug loads (computers, printers, etc.) is not included in the balance.

Moving away from the annual energy budget and including the emissions of the entire building lifetime during construction, operation, and disposal is a key aspect of ZEB. This can be summarised in an emission inventory of operation and building components and services. The aim of this paper is to investigate the emission balance of both operational and the embodied energy in different highly energy efficient buildings concepts which are worth considering toward achieving Zero emission buildings. In this work four concepts for energy efficient buildings are identified which could provide stepping stones towards a definition of ZEB. These concepts were…

Dagens byggeforskrifter krever mye ekstra dokumentasjon om en ikke skal ha balansert ventilasjon, og dette legger i praksis sterke føringer for valg av ventilasjonsløsning. Imidlertid er klimagassutslipp med ulike ventilasjons-konsept i liten grad undersøkt.  

The introduction of dynamic envelope components and systems can have a significant reduction effect on heating and cooling demands. In addition, it can contribute to reduce the energy demand for artificial lighting by better utilization of the daylight. One of these promising technologies is Phase Change Materials (PCM). Here, the latent heat storage potential of the transition between solid and liquid state of a material is exploited to increase the thermal mass of the component. A PCM layer incorporated in a transparent component can increase the possibilities to harvest energy from solar radiation by reducing the heating/cooling demand and still…

State-of-the-art wood stoves could be an attractive solution for the space heating of passive houses. The question of the integration of wood stoves in passive envelopes is rather new and still open, the main constraints being the power oversizing ant the heat distribution. The paper proposes a low-resolution simulation approach to provide an insight into the whole-year thermal comfort using a stove, and into the relative effect of the large number of physical parameters involved in the problem. In particular, a simple stove model is developed for detailed dynamic simulations in order to fairly represent the heat emission properties of…

It is becoming conventional approach to evaluate the building envelop losses using detailed dynamic tools such as EnergyPlus, ESP-r and TRNSYS. However, the user-related loads (and their variations) in the building are usually oversimplified during performance evaluation of those buildings and associated HV AC systems. This paper presents a methodology to evaluate the performance of buildings and their energy supply systems while taking into account the user-related loads (non-HV AC & DHW) at individual household levels. For this purpose, a single family house (two different insulation cases) built in Oslo climate using an alternate duty air to water heat pump…

Transparent façades are often used to increase the aesthetic value of the building and to provide visual contact with the outdoor. However, together with several positive features, it should be mentioned that glass façades may reduce the quality of the indoor thermal environment, causing thermal discomfort especially due to overheating in the summer season. The aim of this paper is to compare the implications on thermal comfort of different glazed façades, whose surface temperatures have been monitored during several experimental campaigns. The analyzed glazing systems were double skin façades and non conventional single skin façades integrating different materials (i.e. phase…

Responsive Building Elements (RBEs) and energy storage within the building are considered as a crucial development towards the nearly Zero Energy/Emission Building target. The exploitation at the building scale of renewable energy sources and the opportunities offered by the environment is achieved by the ability of the RBEs to dynamically adapt to changing environmental conditions. Among these concepts, Advanced Integrated Façades (AIFs) are probably one the most promising technologies, due to the important role that the building envelope plays in controlling the energy and mass flows between the building and the outdoor environment. In the framework of a decade-long research…

Powerhouse One and Kjørbo
Authors: Publication Year: 2012


Powerhouse One og Kjørbo
Authors: Publication Year: 2012


Responsive Building Elements (RBEs) are technologies for the exploiting at the building scale renewable energy sources and the opportunities offered by the environment. Among the RBE concepts identified by the IEA-ECBCS Annex 44, Advanced Integrated Façades (AIFs) is probably one of the most promising technologies. Important players in the field of the façade have started to develop integrated modular façade systems (Multifunctional Façade Modules - MFMs), with a dynamic behaviour and interacting with the other building services, in order to reduce the building energy consumption and maximize the indoor comfort conditions. In the frame of a research activity aimed at…

The adoption of Phase Change Materials (PCMs) in building components is an up-to-date topic and a relevant number of research activities on this issue are currently on the way. A particular application of PCMs in the building envelope focuses on the integration of such a kind of material into transparent envelope components. A numerical model that describes the thermo-physical behaviour of a PCM layer in combination with other transparent materials (i.e. glass panes) has been developed to perform numerical analyses on various PCM glazing systems configurations. The paper illustrates the structure of the model, the main equations implemented and the…

In recent years, Thermal Energy Storage (TES) is becoming more and more important in different engineering applications. As far as the building sector is concerned, TES is considered a crucial feature to reach the net-Zero Energy Building (nZEB) goal. Commonly, TES in building is obtained using the sensible heat property of conventional building materials (building thermal inertia). The drawbacks of this strategy are: the low amount of thermal energy that can be stored; the overheating of the indoor environment that may occur if elevate amount of heat is collected by a conventional building material. On the contrary, the exploitation of…

The building enclosure plays a relevant role in the management of the energy flows in buildings and in the exploitation of the solar energy at building scale. An optimized configuration of the façade can contribute to reduce the total energy demand of the building. Traditionally, the search for the optimal façade configuration is obtained by analyzing the heating demand and/or the cooling demand only, while the implication of the façade configuration on the energy demand for artificial lighting is often not considered, especially during the first stage of the design process. A global approach (i.e. including heating, cooling and artificial…

Search our website

Sort publications by:

Descending order

Filter Publications: