Publications

Abstract Realisation of Zero Energy Buildings (ZEB) for residential use cannot succeed without: minimising leakages, increasing thermal insulation and using reliable and energy efficient system solutions. However, very airtight houses may have a negative impact on thermal comfort and indoor air quality. Focussing on ventilation systems then becomes a requirement. In cold climates, temperature differences between indoor and outdoor air often exceed 40 °C during winter. State-of-the-art heat recovery systems may not be able to handle these differences while providing proper air quality and preventing excessively dry indoor air. The present study of energy recovery systems focuses on apartment buildings located…

Her puster huset av seg selv
Publication Year: 2015


Hus på plussiden
Publication Year: 2015


Et selvdrevent fremtidshus
Publication Year: 2014


Ombygging av eneboliger
Authors: Publication Year: 2015


Abstract The substantial reduction of required heating load in passive house buildings has led to an integration of heating in the ventilation system by post-heating the supply-air, called air-heating. The incorporation of heating in the ventilation system constitutes a departure from a well-established customary practice of strictly separating heating and ventilation in the indoor climate design. It is therefore imperative to thoroughly investigate and evaluate air-heating with regard to effects on the indoor air quality (IAQ) and thermal comfort. Simulations and laboratory measurements suggest that air-heating has no adverse effects on IAQ and thermal comfort. The purpose of this paper…

Abstract Modeling simplification related to occupant’s behavior is a major cause of gap between actual and model’s predicted energy use of buildings. This paper aims to identify those parameters of realistic occupants-related heat gains that actually cause this gap. The investigation therefore, systematically distinguishes the occupant behavior using three behavior parameters, namely: the occupancy behavior, the appliance use behavior and the family size. The effect of these parameters is investigated on a building for two different insulation standards using heat pump as energy supply system. The results identifies the occupancy patterns and the household size as two major parameters that explains a large portion…

Abstract Background Phase change materials (PCMs) have been proposed as a means to increase the thermal inertia of glazing systems. These materials have optical features that need to be investigated and characterised in order to better understand the potential of these systems and to provide reliable data for numerical simulations. Methods The spectral and angular behaviour of different PCM glazing samples, characterised by different thicknesses of PCMs, were investigated by means of commercial spectrophotometer and by means of a dedicated optical test bed that includes a large integrating sphere with a diameter of 0.75 m. Such equipment was necessary because of…

Abstract Low-emissivity (low-e) materials can be used in order to reduce energy usage in both opaque and transparent areas of a building. The main focus for low-e materials is to reduce the heat transfer through thermal radiation. Furthermore, low-e materials will also influence on the daylight and total solar radiation energy throughput in windows, the latter one often characterized as the solar heat gain coefficient (SHGC). This work reviews low-e materials and products found on the market, and their possible implementations and benefits when used in buildings. The SHGC is often left out by many countries in energy labellings of…

Abstract Phase change materials (PCM) have received considerable attention over the last decade for use in latent heat thermal storage (LHTS) systems. PCMs give the ability to store passive solar and other heat gains as latent heat within a specific temperature range, leading to a reduction of energy usage, an increase in thermal comfort by smoothing out temperature fluctuations throughout the day and a reduction and/or shift in peak loads. The interest around PCMs has been growing significantly over the last decade. Hence, several commercial products have arrived on the market with various areas of use in building applications. This…

Abstract The considerable amount of energy spent on the construction, maintenance, and demolition of buildings draws attention to sustainable development in the construction sector. Regarded as both tools and frameworks, laws are expected to sustain and speed technological innovation. With the STS (Science and Technology Studies) theory of domestication and in-depth interviews with building researchers studying zero emission buildings in Norway, I discuss the role of research engineers in the domestication of law, that is, the translation of European Directives for building codes and technical requirements, and the mediation of these legal frameworks for industry and practitioners. I classify two…

Abstract Shading systems are widely used, also in Nordic climates, in conjunction with glazed facade in office buildings. The primary functions of the solar shading devices are to control solar gains leading to cooling needs during operational hours and reduction of discomfort caused by glare. A secondary property of shading devices incorporated in glazing units is that they can be utilized as an additional layer in the glazing unit when the shading device is deployed. This can improve the thermal transmittance value (U-value) of the windows. It can be deployed during night-time or in periods when a blocked view does…

Abstract The CO2 emissions from a building’s power system will change over the life time of the building, and this need to be taken into account to verify whether a building is Zero Emission (ZEB) or not. This paper describes how conversion factors between electricity demand and emissions can be calculated for the European power system in a long term perspective through the application of a large scale electricity market model (EMPS). Examples of two types of factors are given: a conversion factor for average emissions per kWh for the whole European power system as well as a marginal factor for…

Abstract Improvements to concrete will have a large impact in the construction and building sector. As the attention is drawn towards energy-efficient and zero emission buildings, the thermal properties of concrete will be important. Attempts are being made to decrease the thermal conductivity of concrete composites while retaining as much as possible of the mechanical strength. In this study experimental investigations of aerogel-incorporated mortar (AIM) with up to 80 vol% aerogel are prepared utilizing a reduced ultra-high performance concrete (UHPC) recipe. It was found that at 50 vol% aerogel content, the AIM sample possessed a compressive strength of 20 MPa and a thermal…

Abstract The research center of Zero Emissions Buildings (ZEB) has a goal of eliminating the greenhouse gas emissions associated with all phases of building development and use. This is achieved through more sustainable building construction and more efficient energy use. The Norwegian government has a similar goal of achieving zero energy buildings as a standard by 2020. This has led to proper investigation in technological solutions that can help to achieve these goals. In a net-ZEB perspective, combined heat and power (CHP) is considered as a potential energy supply solution for buildings. CHP is seen as an emerging technology which…

Abstract During the uncontrolled consumption period the building sector has come to account one of the greatest proportions of greenhouse gas emissions and energy use in industrial countries. In this context, European countries have decided to address the environmental challenge by promoting the use of renewable energies and the implementation of low energy consumption requirements. For these reasons, zero emission buildings, which have a net zero annual energy demand, were regarded as a possible solution. And everything points to believe that they will continue to be crucial in a recent future. Consultants and contractors have shown the need towards a…

Abstract The ambition level for the zero emission neighbourhood Aadland is that the area will be self supplied with both thermal and electric energy. This paper presents how emissions from operation of the 500 dwellings are offset by on-site renewable energy production. The paper also describes a procedure for how to deal with embodied emissions from materials in an early stage design phase. The study verifies that it is possible to reach a zero emission balance for the neighbourhood. Zero emission from operation is achievable as an average for the neighbourhood. For individual zero emission buildings this also includes embodied emissions from materials and construction in…

Droppet solfangere i siste liten
Publication Year: 2014


Sammendrag Denne rapporten beskriver resultatene fra et prosjekt hvor vi har gjennomgått og diskutert erfaringer fra et utvalg utbyggingsprosjekter i Norge hvor man har hatt spesielt høye ambisjoner med hensyn tilenergibruk og klimagassutslipp. Prosjektets målsetning er å bidra til økt kunnskap om gode løsninger for utforming av bygninger og energiforsyning for fremtidens boligområder, samt danne underlag for enveileder til bruk i planleggingsprosessen. Hovedkonklusjonen er at det er behov for mer kunnskap og veiledningsmateriale om hvordan man kan integrere dette tidlig i planprosessen. Følgende punkter erspesielt viktige:  Fokus på integrert, tverrfaglig prosjektering fra tidligfase. Formulering av konkrete krav/målsetninger i tidligfase. Undersøkelse av tilgjengelighet og…

Abstract The increasing energy consumption and its consequences have led to a major need for energy saving measures. Therefore, the passive house concept has been introduced. Passive houses have a low heating demand, so that it is theoretically possible to simplify the space heating distribution system by for example reduce the number of radiators. It has therefore been investigated if one central heat source can give sufficient thermal comfort in a whole housing unit. Research shows, with the use of simulations for Belgian climate, that thermal comfort can be obtained in the whole dwelling if the internal doors are open.…

Abstract Because human population is growing at such a high rate, as well as the energy consumption per person, new ways of preserving and efficiently using available energy must be explored. Until new and abundant energy sources are found and means of their exploitation developed, research attention should be focused on finding ways of proper and safe use of what is nowadays available. In that sense, storage of thermal energy plays an important role both in heating and/or cooling applications, such as in residential or commercial buildings, and in industrial processes. Some of the technical solutions are based on phase…

Abstract Thermal performance of the solar thermal systems are estimated using numerical methods and software since the solar processes are transitient in nature been driven by time dependent forcing functions and loads. The system components are defined with mathematical relationships that describe how components function. They are based on first principles (energy balances, mass balances, rate equations and equilibrium relationships) at one extreme or empirical curve fits to operating data from specific machines such as absorption chillers. The component models are programed i.e. they represent written subroutines which are simultaneously solved with the executive program. In this thesis for executive…


Abstract Glass represents an important and widely used building material, and crucial aspects to be addressed include thermal conductivity, visible light transmittance, and weight for windows with improved energy efficiency. In this work, by sintering monolithic silica aerogel precursors at elevated temperatures, aerogel glass materials were successfully prepared, which were characterized by low thermal conductivity [k ≈ 0.17–0.18 W/(mK)], high visible transparency (Tvis ≈ 91–96 % at 500 nm), low density (ρ ≈ 1.60–1.79 g/cm3), and enhanced mechanical strength (typical elastic modulus Er ≈ 2.0–6.4 GPa). These improved properties were derived from a series of successive gelation and aging steps during the desiccation of silica aerogels. The involved sol → gel → glass transformation was investigated by means…

Abstract This paper deals with the experimental assessment of the energy performance of two Advanced Integrated Façade modules (AIF) characterized by two very similar configurations. The two AIF modules were installed on the south-exposed façade of an outdoor test cell facility (a real-scale mockup of an office building) and continuous measurements were carried out for more than one year. Data collected during the experimental campaign were analyzed to evaluate the energy performance and thermo-physical behaviour of the AIF modules. The performances of the two systems were assessed by comparison and by means of conventional and advanced synthetic metrics. The results…

Search our website

Sort publications by:

Descending order

Filter Publications: