Publications

The demands for both thermal comfort and reduced energy consumption in buildings have become a major driving force for the increased use of advanced building automation and control systems (BACS). In the on-going development of Zero Emission Buildings (ZEBs), it seems to be a common understanding that such systems are needed in order to save energy and reach the zero emission goals, and that energy consumption for their operation is negligible compared to the building needs and the energy saving potential BACS causes. However, sensors and actuators in automation and control systems require electricity to operate, and both the environmental…

The demands for both thermal comfort and reduced energy consumption in buildings have become a major driving force for the increased use of advanced building automation and control systems (BACS). In the on-going development of Zero Emission Buildings (ZEBs), it seems to be a common understanding that such systems are needed in order to save energy and reach the zero emission goals, and that energy consumption for their operation is negligible compared to the building needs and the energy saving potential BACS causes. However, sensors and actuators in automation and control systems require electricity to operate, and both the environmental…

Pilot projects of sustainable climate-adapted architecture and the national research for carbon neutral buildings

The adoption of Phase Change Materials (PCMs) in glazing systems was proposed to increase the heat capacity of the fenestration, being some PCMs partially transparent to visible radiation. The aim of the PCM glazing concept was to let (part) of the visible spectrum of the solar radiation enter the indoor environment, providing daylighting, while absorbing (the largest part of) the infrared radiation. In this paper, the influence of the PCM glazing configuration is investigated by means of numerical simulations carried out with a validated numerical model. Various triple glazing configurations, where one of the two cavities is filled with a…

Abstract The application of traditional thermal insulation materials requires thicker building envelopes in order to satisfy the requirements of the emerging zero energy and zero emission buildings. This work summarizes the steps from the state-of-theart thermal insulation materials and solutions, like vacuum insulation panels (VIP), gas-filled panels (GFP) and aerogels which all have various drawbacks, to our concepts and experimental investigations for making superinsulation materials (SIM) like e.g. nano insulation materials (NIM).

Abstract Shading systems are widely used, also in Nordic climates, in conjunction with glazed facade in office buildings. The primary functions of the solar shading devices are to control solar gains leading to cooling needs during operational hours and reduction of discomfort caused by glare. A secondary property of shading devices incorporated in glazing units is that they can be utilized as an additional layer in the glazing unit when the shading device is deployed. This can improve the thermal transmittance value (U-value) of the windows. It can be deployed during night-time or in periods when a blocked view does…

This thesis investigates whether the use of TMA is suitable for and of benefit to the Norwegian building industry. Power House One plans to use the same heating technology as the Sparebank1 building in Trondheim. This building uses ventilation to distribute thermal energy to the end of activating the thermal mass. The purpose of this thesis was therefore to determine whether it is more efficient to use water rather than air to distribute thermal energy. Water has a higher volumetric heat capacity than air and therefore water-carrying pipes embedded in the thermal mass should be more efficient in distributing thermal…

Thermal conductivity of TiO2 nanotubes prepared from a NaOH treatment of TiO2 particles with subsequent acid washing and annealing has been investigated. The obtained TiO2 nanotubes have a tetragonal anatase structure, and have a typical inner diameter of about 4-5 nm, wall thickness of about 2-3 nm, and length up to several hundred nanometers. TiO2 nanotubes show a significantly reduced thermal conductivity of about 0.40-0.84 W/(m·K) (average 0.62 W/(m.K)) at room temperature, as compared to about 8.5 W/(m·K) for the bulk TiO2 materials. The great suppression in thermal conductivity can be understood by means of increased phonon-boundary scattering and enhanced…

Abstract The increasing energy consumption and its consequences have led to a major need for energy saving measures. Therefore, the passive house concept has been introduced. Passive houses have a low heating demand, so that it is theoretically possible to simplify the space heating distribution system by for example reduce the number of radiators. It has therefore been investigated if one central heat source can give sufficient thermal comfort in a whole housing unit. Research shows, with the use of simulations for Belgian climate, that thermal comfort can be obtained in the whole dwelling if the internal doors are open.…

Summary At the Research Centre on Zero Emission Buildings of NTNU, a new test facility (Living Laboratory) is currently in the final stage of construction and will start its operation in summer 2015. The Living Laboratory was designed to carry out experimental investigations at different levels, ranging from envelope to building equipment components, from ventilation strategies to action research on lifestyles and technologies, where interactions between users and low (zero) energy buildings are studied.The test facility is a single family house with a gross volume of approximately 500 m3 and a heated surface (floor area) of approximately 100 m2. It…

Abstract Electrochromic materials (ECM) and windows (ECW) are able to regulate the solar radiation throughput by application of an external electrical voltage. Thus, ECWs may decrease heating, cooling, lighting and electricity loads in buildings by admitting the optimum level of solar energy and daylight at any given time, e.g. cold winter climate versus warm summer climate demands. It is crucial to be able to compare the dynamic solar radiation control for different ECWs and hence require specific ECW properties. The solar radiation control for ECWs may readily be characterized by several solar radiation glazing factors, where a comparison for various ECW configurations enables one to select the most appropriate ones for specific smart…

Phase change materials (PCMs) have opened a new door towards the renewable energy future due to their effective thermal energy storage capabilities. Several products have recently found their way to the market, using various types of PCMs. This paper focuses on one particular wall-board product, integrated in a well-insulated wall constructed of an interior gypsum board, PCM layer, vapor barrier, mineral wool, and a wind barrier. The wall is tested with and without the PCM layer in order to get comparative results. Experiments are conducted in a traditional guarded hot box. The hot box is composed of two full-scale test…

Abstract The substantial reduction of required heating load in passive house buildings has led to an integration of heating in the ventilation system by post-heating the supply-air, called air-heating. The incorporation of heating in the ventilation system constitutes a departure from a well-established customary practice of strictly separating heating and ventilation in the indoor climate design. It is therefore imperative to thoroughly investigate and evaluate air-heating with regard to effects on the indoor air quality (IAQ) and thermal comfort. Simulations and laboratory measurements suggest that air-heating has no adverse effects on IAQ and thermal comfort. The purpose of this paper…

The zero-energy project Skarpnes residential development in Arendal in Norway consists of a total of 40 dwelling units. The energy goal of the buildings is net zero-energy on a yearly level. In addition, the greenhouse gas emissions (GHG) related to the operational energy of the buildings shall also be zero on an annual basis. There is also an aim achieving low embodied energy and GHG emissions related to the buildings materials and products. The thermal demand of the buildings will be covered by heat pumps and thermal solar collectors. To reach the zero energy/emission goal, the roofs are partly covered…

Ventilation is a crucial aspect in super-insulated and airtight buildings. Façade-integrated ventilation systems are a state-of-the-art technology which is considered an energy efficient option. Results of the conducted evaluation in Nordic context show that some aspects need adaption to local requirements. However, good performance can be expected in fields like indoor comfort and user satisfaction. The technology has enormous potential and might be an alternative if there are high expectations on indoor environment but conventional ventilation systems are not applicable. The used tools in this work include ESP-r and Simien for dynamic simulation of building performance.

Abstract The ambition level for the zero emission neighbourhood Aadland is that the area will be self supplied with both thermal and electric energy. This paper presents how emissions from operation of the 500 dwellings are offset by on-site renewable energy production. The paper also describes a procedure for how to deal with embodied emissions from materials in an early stage design phase. The study verifies that it is possible to reach a zero emission balance for the neighbourhood. Zero emission from operation is achievable as an average for the neighbourhood. For individual zero emission buildings this also includes embodied emissions from materials and construction in…

Abstract The considerable amount of energy spent on the construction, maintenance, and demolition of buildings draws attention to sustainable development in the construction sector. Regarded as both tools and frameworks, laws are expected to sustain and speed technological innovation. With the STS (Science and Technology Studies) theory of domestication and in-depth interviews with building researchers studying zero emission buildings in Norway, I discuss the role of research engineers in the domestication of law, that is, the translation of European Directives for building codes and technical requirements, and the mediation of these legal frameworks for industry and practitioners. I classify two…

The article's aim is to present user experiences with passive houses and zero-energy buildings. The focus is on the interaction between the building and the users, specifically on how user interfaces, knowledge, and commitment influence the use of the building and the level of energy consumption awareness.

Abstract The current practice of building energy upgrade typically uses thick layers of insulation in order to comply with the energy codes. Similarly, the Norwegian national energy codes for residential buildings are moving towards very low U-values for the building envelope. New and more advanced materials, such as vacuum insulation panels (VIPs) and aerogel, have been presented as alternative solutions to commonly used insulation materials. Both aerogel and VIPs offer very high thermal resistance, which is a favourable characteristic in energy upgrading as the same insulation level can be achieved with thinner insulation layers. This paper presents the results of energy…

The main direction of the thesis is analyzing the impact on solar access and energy demand of different building mass in linear building forms. The study model of this work is a current ongoing project - a suburb sustainable residential community design project locates in Ådland, Bergen, Norway. The work mainly consists of two parts: theory and project analyses. Both two parts are focusing on reducing environmental impact of suburb sustainable residential communities. More specifically, the theory is aiming on finding out the critical design and energy issues for suburb sustainable residential communities. The project is aiming on using the…

Buildings are responsible for 38 % of energy use in Norway, about 64 % of which is heating energy. Lacking of architectural design at the early design stage has adverse consequences on the climate and environmental efficiency of buildings, which is a burden for reducing the energy consumption of buildings. This research uses Ådland project as a case study in order to investigate how the building morphology which is one aspect of the architectural quality will impact the heating demand of buildings. The research is based on the design which is ongoing in the Research Centre of Zero Emission Buildings…

Abstract This paper shows the results of a research activity aimed at assessing the advantages of an ideal adaptive building skin over conventional building envelope systems. The basic idea underlying the research consists in imagining an ideal building envelope system characterised by the capability of continuously changing (within a certain range) some of its thermo-physical and optical properties. The reason for the continuous tuning of thermo-physical and optical properties lies in the assumption that an optimised (fixed) configuration, where the properties do not change over time, is not able to minimise the total energy demand of the building at each…

Search our website

Sort publications by:

Descending order

Filter Publications: