Publications

Smarte hus
Authors: Publication Year: 2013


This article proposes a new area of research centered on the study of how energy sensibilities—in terms of esthesia which is understood as responsiveness and awareness—are distributed and redistributed. Energy is approached as a polyphonic concept with many meanings, of which none enjoys privileged status. Given this polyphony, the common observation that end-users have no idea (or wrong ideas) about their energy consumption loses importance. Instead, unevenly distributed ways of sensing and making sense of energy become the object of study. Drawing on the work of French philosopher Jacques Rancière, the article discusses contemporary distributions of energy sensibilities in domestic…

This paper is based on a review of research that describes user experiences with different types of energy efficient buildings, focusing on indoor climate, technical operation, user attitudes, and general satisfaction. Energy efficient buildings are often rated better than conventional buildings on indoor climate, but when investigating more thoroughly, the users have different concerns. The varying results from the user evaluations reflect that the quality of the buildings differs. However, user concerns may also be a result of inappropriate use. Perceived personal control and sufficient information on operation and use is crucial for an overall positive experience of the building.…

Eksempler på nær nullenergibygg
Authors: Publication Year: 2013


Abstract Glass represents an important and widely used building material, and crucial aspects to be addressed include thermal conductivity, visible light transmittance, and weight for windows with improved energy efficiency. In this work, by sintering monolithic silica aerogel precursors at elevated temperatures, aerogel glass materials were successfully prepared, which were characterized by low thermal conductivity [k ≈ 0.17–0.18 W/(mK)], high visible transparency (Tvis ≈ 91–96 % at 500 nm), low density (ρ ≈ 1.60–1.79 g/cm3), and enhanced mechanical strength (typical elastic modulus Er ≈ 2.0–6.4 GPa). These improved properties were derived from a series of successive gelation and aging steps during the desiccation of silica aerogels. The involved sol → gel → glass transformation was investigated by means…

Vacuum insulation panels (VIPs) are regarded as one of the most promising existing high performance thermal insulation solutions on the market today as their thermal performance typically range 5–10 times better than traditional insulation materials. However, the VIPs have several disadvantages such as risk of puncturing by penetration of nails and that they cannot be cut or fitted at the construction site. Furthermore, thermal bridging due to the panel envelope and load-bearing elements may have a large effect on the overall thermal performance. Finally, degradation of thermal performance due to moisture and air diffusion through the panel envelope is also…

Abstract The main objective of this paper is to contribute to the discussion on the role of Net Zero Energy Buildings (Net ZEBs) on future energy systems by the interplay between on-site generation and the building loads, often called load matching, and the resulting import/export interaction with the surrounding electricity grid, commonly named grid interaction. This investigation analyzes five case studies with high resolution data, three of which are based on real monitored buildings. The research aims at selecting and suggesting a limited set of quantitative indicators that: (a) can provide practical information for building as well as grid designers…

Building integrated photovoltaics (BIPVs) are photovoltaic materials that replace conventional building materials in parts of the building envelopes, such as roofs or facades, i.e. the BIPV system serves dual purposes, as both a building envelope material and a power generator. Hence, it is important to focus on the building envelope properties of a BIPV system in addition to energy generation performance when conducting experimental investigations of BIPVs. The aim of this work was to illustrate challenges linked to the building envelope properties of a BIPV system, and to develop and evaluate relevant methods for testing the building envelope properties of…

Powerhouse
Authors: Publication Year: 2012


Ådland får verdens mest miljøvennlige boliger, mener Arbeiderpartiets Ruth Grung. Tirsdag ga miljøvernministeren grønt lys for nullutslippboligene på Ådland.   Skrevet at Terje Bringsvor Nilsen

I ZEB, og som en del av arbeidspakke 5 "Konsepter og strategier for nullutslippsbygg", er det gjennomført en studie av to energikonsepter for boligområdet Ådland i Bergen. Ådland ligger ved Flesland rett sør for Bergen sentrum. ByBo AS ønsker å bygge ut fra 500 – 800 boliger på området hvor både de enkelte boligene og området som helhet skal oppfylle kriterier for nullutslippsbygg. I ZEB er det definert ulike ambisjonsnivå for nullutslippsbygg. Den gjennomførte studien anbefaler et ambisjonsnivå ZEB-O som et gjennomsnitt for Ådland området. ZEB-O betyr at området skal være selvforsynt med energi, inklusive elektrisitet og varme, over et…

Large scale energy efficient renovation of buildings is one of the most important tools to realize the society's need of a more sustainable building stock. Most Norwegians own their own homes. Therefore private homeowners are a focus group for the government urging to accelerate the dwelling energy efficiency rates. Success factors were identified in the in-depth study of the decision process of eleven homeowners. Large differences in energy use due to the building's condition and the occupants' behavior was encountered in the sample. Only homeowners who were conscious consumers and did not trust expert advice or that had special knowledge…

Abstract The paper presents a case study of an office building with a façade integrated PV system in Norway. Due to the urban surrounding the PV system is subject to significant overshadowing. The aim is to optimize the solar energy potential of the building in order to propose improved alternatives to the current system applying a multi-level simulation approach. The first level is performed to calculate the maximum solar potential on the building envelope in an unobstructed scenario. The second level examines the shading effect on the building in its urban context. The analyses allow localizing the areas of the…

Moving away from the annual energy budget and including the emissions of the entire building lifetime during construction, operation, and disposal is a key aspect of ZEB. This can be summarised in an emission inventory of operation and building components and services. The aim of this paper is to investigate the emission balance of both operational and the embodied energy in different highly energy efficient buildings concepts which are worth considering toward achieving Zero emission buildings. In this work four concepts for energy efficient buildings are identified which could provide stepping stones towards a definition of ZEB. These concepts were…

Abstract A frost-free membrane energy exchanger design model is developed combining the conventional ε−NTU method with a frost limit model. A concept of plate performance index is defined to evaluate the net energy saving ability. The frost-free design model and plate performance index are employed for a case study of single-family dwelling with an all-fresh-air air handling unit with a heat/energy recovery exchanger. The membrane energy exchanger, which is able to ensure frost-free operation without extra frost control strategies, is applicable to most cold climates for residential applications. The membrane energy exchanger has a significant energy saving potential compared to…

Search our website

Sort publications by:

Descending order

Filter Publications: